MATHEMATICAL COMPUTING I

MATH 2200

Course Description:

This is a first course in mathematical computing. It covers the basic elements of scientific programming in both a computer algebra system and a high-level programming language. Explored are implementation issues, problem description, model building, method development, and solution assessment. **3 credits**

Prerequisites:

MATH 1950

Overview of Content and Purpose of the Course:

Students will learn the fundamental components of computational problem solving by exploring level-appropriate scientific programming problems. They will learn how to build the models, solution methods, and actual programs to solve the problems.

Major Topics:

1) Looping and Repetition

- a. Newton's Method
- b. Riemann Sums
- c. Series Convergence
- d. Approximating Lengths of Curves

2) Program Conditionals

- a. Double Integral Approximation
- b. Computational Geometry

3) Procedures

- a. Optimizing Functions of Two Variables
- b. More Computational Geometry

4) Graphics Programming and Animation

a. Approximating Solids of Revolution

5) Recursion

- a. Recurrence Relations
- b. Sorting
- c. Base N Representations of Numbers

6) Project

- a. Fractals (Crystal Growth)
- b. Inscribed Polygons
- c. Random Walks